Lubenham,

North

Kilworth and South Kilworth
Mathematic
s Curriculum
Framework

Intent

At South Kilworth C of E Primary School our aim is to develop lifelong mathematicians who are able to make sense of the world around them through developing their ability to calculate, reason and problem solve. Mathematics is essential to everyday life, critical to science, technology and engineering and necessary for finial literacy and most forms of employment. A high-quality mathematics education therefore provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject. We aim to support children to achieve economic wellbeing and equip them with a range of computational skills and the ability to solve problems in a variety of contexts.

Implementation

Our long term planning is based on the National Curriculum and the Whiterose Scheme. The planning has been broken down in to a medium term planning detailing small steps that supports the teaching of mixed age classes. Short term planning is supported by the use of the White Rose Maths Hub materials and NCETM ready to progress materials. Using prior knowledge as a starting point for all future planning and teaching, we plan lessons which are required for all pupils to make good progress. Use of appropriate vocabulary is modelled throughout lessons by both staff and children, allowing everyone to 'talk like a mathematician'. Once a child can articulate their understanding of a concept, they can truly begin to make connections within their learning. Conceptual variation and procedural variation are used extensively throughout teaching. This helps to present the mathematics in ways that promote deep, sustainable learning.

Impact

A mathematical concept or skill has been mastered when a child can show it in multiple ways, using the mathematical language to explain their ideas, and can independently apply the concept to new problems in unfamiliar situations. Children demonstrate quick recall of facts and procedures. This includes the recollection of the times tables. - The flexibility and fluidity to move between different contexts and representations of mathematics. - The ability to recognise relationships and make connections in mathematics. Children show confidence in believing that they will achieve.

1	2	3	4	4	5	6	7	8	9
Number and Place Value	Addition and Subtraction	Multiplication and Division	Fractions	Measurement	Geometry properties of shape	Geometry position and direction	Statistics	Ratio	Algebra
Year RYear 6	Year RYear 6	Year R- Year 6	Year R- Year 6	$\begin{aligned} & \text { Year R - } \\ & \text { Year } 6 \end{aligned}$	Year RYear 6	Year RYear 6	Year R- Year 6	Year 5 Year 6	Year 5 and Year 6

Year Group	Year R	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Multiplication and division focus	Doubling and halving	$10 \times$	$2 \times 5 \times 3 \times$	$4 \times 8 \times 6 \times 11 \mathrm{x}$	$7 \times 9 \times 12 \mathrm{x}$	Revision and fluency	Revision and fluency

National Curriculum

EYFS Framework: Mathematics

Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers. By providing frequent and varied opportunities to build and apply this understanding - such as using manipulatives, including small pebbles and tens frames for organising counting - children will develop a secure base of knowledge and vocabulary from which mastery of mathematics is built. In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures. It is important that children develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes.

EYFS Development Matters: Mathematics

Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers.

By providing frequent and varied opportunities to build and apply this understanding - such as using manipulatives, including small pebbles and tens frames for organising counting - children will develop a secure base of knowledge and vocabulary from which mastery of mathematics is built. In addition, it is important that the curriculum includes rich opportunities for children to develop their spatial reasoning skills across all areas of mathematics including shape, space and measures.

It is important that children develop positive attitudes and interests in mathematics, look for patterns and relationships, spot connections, 'have a go', talk to adults and peers about what they notice and not be afraid to make mistakes.

Children in reception will be learning to:

- count objects, actions and sounds
- subitise
- link the number symbol (numeral) with its cardinal number value
- count beyond 10
- compare numbers
- understand the 'one more than or one less than' relationship between consecutive numbers
- explore the composition of numbers to 10
- automatically recall number bonds for numbers 0 to 5 and some to 10
- select, rotate and manipulate shapes to develop spatial reasoning skills
- compose and decompose shapes so that children recognise a shape can have other shapes within it, just as numbers can
- continue, copy and create repeating patterns
- compare length, weight and capacity

Early Learning Goal : Mathematics. Number and Numerical Patterns

Children at the expected level of development will:
ELG: Number Children at the expected level of development will: Have a deep understanding of number to 10 , including the composition of each number; 14 - Subitise (recognise quantities without counting) up to 5 ; - Automatically recall (without reference to rhymes, counting or other aids) number bonds up to 5 (including subtraction facts) and some number bonds to 10, including double facts.
ELG: Numerical Patterns Children at the expected level of development will: - Verbally count beyond 20 , recognising the pattern of the counting system; - Compare quantities up to 10 in different contexts, recognising when one quantity is greater than, less than or the same as the other quantity; - Explore and represent patterns within numbers up to 10 , including evens and odds, double facts and how quantities can be distributed equally.

Strand/ Half-term	Subitising	Cardinality, ordinality and counting	Composition	Comparison
Autumn 1 Children will:	perceptually subitise within 3 identify sub-groups in larger arrangements create their own patterns for numbers within 4 practise using their fingers to represent quantities which they can subitise experience subitising in a range of contexts, including temporal patterns made by sounds.	relate the counting sequence to cardinality, seeing that the last number spoken gives the number in the entire set have a wide range of opportunities to develop their knowledge of the counting sequence, including through rhyme and song have a wide range of opportunities to develop 1:1 correspondence, including by coordinating movement and counting have opportunities to develop	- see that all numbers can be made of 1 s compose their own collections within 4.	understand that sets can be compared according to a range of attributes, including by their numerosity - use the language of comparison, including 'more than' and 'fewer than' compare sets 'just by looking'.

		an understanding that anything can be counted, including actions and sounds explore a range of strategies which support accurate counting.		
Autumn 2 Children will:	continue from firs \dagger half-term subitise within 5 , perceptually and conceptually, depending on the arrangements.	- continue to develop their counting skills explore the cardinality of 5, linking this to dice patterns and 5 fingers on 1 hand begin to count beyond 5 begin to recognise numerals, relating these to quantities they can subitise and count.	explore the concept of 'wholes' and 'parts' by looking at a range of objects that are composed of parts, some of which can be taken apart and some of which cannot explore the composition of numbers within 5.	compare sets using a variety of strategies, including 'just by looking', by subitising and by matching compare sets by matching, seeing that when every object in a set can be matched to one in the other set, they contain the same number and are equal amounts.
Spring 1 Children will:	increase confidence in subitising by continuing to explore patterns within 5 , including structured and random arrangements explore a range of patterns made by some numbers greater than 5, including structured patterns in which 5 is a clear part experience patterns which show a small group and ' 1 more' continue to match arrangements to finger patterns.	continue to develop verbal counting to 20 and beyond continue to develop object counting skills, using a range of strategies to develop accuracy continue to link counting to cardinality, including using their fingers to represent quantities between 5 and 10 order numbers, linking cardinal and ordinal representations of number.	- continue to explore the composition of 5 and practise recalling 'missing' or 'hidden' parts for 5 explore the composition of 6 , linking this to familiar patterns, including symmetrical patterns begin to see that numbers within 10 can be composed of '5 and a bit'.	- continue to compare sets using the language of comparison, and play games which involve comparing sets continue to compare sets by matching, identifying when sets are equal explore ways of making unequal sets equal.
Spring 2 Children will:	explore symmetrical patterns, in which each side is a	- continue to consolidate their understanding of	explore the composition of odd and even numbers,	- compare numbers, reasoning about which is more, using both an understanding of the

	familiar pattern, linking this to 'doubles'.	cardinality, working with larger numbers within 10 become more familiar with the counting pattern beyond 20.	looking at the 'shape' of these numbers begin to link even numbers to doubles begin to explore the composition of numbers within 10.	'howmanyness' of a number, and its position in the number system.
Summer 1 Children will:	continue to practise increasingly familiar subitising arrangements, including those which expose ' 1 more' or 'doubles' patterns use subitising skills to enable them to identify when patterns show the same number but in a different arrangement, or when patterns are similar but have a different number subitise structured and unstructured patterns, including those which show numbers within 10, in relation to 5 and 10 be encouraged to identify when it is appropriate to count and when groups can be subitised.	- continue to develop verbal counting to 20 and beyond, including counting from different starting numbers continue to develop confidence and accuracy in both verbal and object counting.	- explore the composition of 10 .	- order sets of objects, linking this to their understanding of the ordinal number system.
Summer 2	- In this half-term, the children will consolidate their understanding of concepts previously taught through working in a variety of contexts and with different numbers.			

National Curriculum:

The principal focus of mathematics teaching in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value. This should involve working with numerals, words and the four operations, including with practical resources [for example, concrete objects and measuring tools]. At this stage, pupils should develop their ability to recognise, describe, draw, compare and sort different shapes and use the related vocabulary. Teaching should also involve using a range of measures to describe and compare different quantities such as length, mass, capacity/volume, time and money. By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency. Pupils should read and spell mathematical vocabulary, at a level consistent with their increasing word reading and spelling knowledge at key stage 1 .

Autumn Term - Strands

Place Value	Addition and Subtraction	Shape
Programme of Study		
Year 1	Year 1	Year 1
- count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number - count, read and write numbers to 100 in numerals; count in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s - given a number, identify 1 more and 1 less - identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least - read and write numbers from 1 to 20 in numerals and words	- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs - represent and use number bonds and related subtraction facts within 20 - add and subtract one-digit and two-digit numbers to 20 , including 0 - solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 $=$? -9	- recognise and name common 2-D and 3-D shapes, including: - 2-D shapes [for example, rectangles (including squares), circles and triangles] - 3-D shapes [for example, cuboids (including cubes), pyramids and spheres]

Year 2
Year 2

- count in steps of 2,3 , and 5 from 0 , and in 10 s from any number, forward and backward
- recognise the place value of each digit in a two-digit number (10s, 1s)
- identify, represent and estimate numbers using different representations, including the number line
- compare and order numbers from 0 up to 100; use <, > and = signs
- read and write numbers to at least 100 in numerals and in words
- use place value and number facts to solve problems
- solve problems with addition and subtraction
- using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and 1 s
- a two-digit number and 10 s
- 2 two-digit numbers
- adding 3 one-digit numbers
- show that addition of 2 numbers can be done in any order (commutative) and subtraction of 1 number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
- identify and describe the properties of 2-D shapes, including the number of sides, and line symmetry in a vertical line
- identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces
- identify 2-D shapes on the surface of 3-D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]
- compare and sort common 2-D and 3-D shapes and everyday objects

Spring Term - Strands

Place Value	Addition and Subtraction	Multiplication and division	Measurement
Programme of Study			
Year 1	Year 1	Year 1	Year 1
- count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number - count, read and write numbers to 100 in numerals;	- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs - represent and use number bonds and related subtraction facts within 20	- solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays	- mass/weight [for example, heavy/light, heavier than, lighter than] - capacity and volume [for

count in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s

- given a number, identify 1 more and 1 less
- identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least
- read and write numbers from 1 to 20 in numerals and words
- add and subtract one-digit and two-digit numbers to 20 , including 0
- solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=$? -9
with the support of the teacher
example,
full/empty, more than, less than, half, half full, quarter]
- measure and
begin to record the following:
- mass/weight
- capacity and volume

Year 2

- count in steps of 2,3, and 5 from 0 , and in 10 s from any number, forward and backward
- recognise the place value of each digit in a two-digit number (10s, 1s)
- identify, represent and estimate numbers using different representations, including the number line
- compare and order numbers from 0 up to 100; use <, > and = signs
- read and write numbers to at least 100 in numerals and in words
- use place value and number facts to solve problems

Year 2

- solve problems with addition and subtraction
- using concrete objects and pictorial representations, including those involving numbers, quantities and measures
- applying their increasing knowledge of mental and written methods
- recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
- add and subtract numbers using concrete objects, pictorial representations, and mentally, including:
- a two-digit number and 1 s
- a two-digit number and 10s
- 2 two-digit numbers
- adding 3 one-digit numbers
- show that addition of 2 numbers can be done in any order

Year 2

- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers
- calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals ($=$) signs
- show that multiplication of 2 numbers can be done in any order (commutative) and division of 1 number by another cannot
- solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division

Year 2

- choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature (${ }^{\circ} \mathrm{C}$); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels
- compare and order lengths, mass, volume/capacity and record the results using >, < and =
(commutative) and subtraction of
1 number from another cannot
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems

Summer Term - Strands

Fractions	Measurement	Position and Direction	Statistics	Place Value
Programme of Study				
Year 1				
- recognise, find and name a half as 1 of 2 equal parts of an object, shape or quantity - recognise, find and name a quarter as 1 of 4 equal parts of an object, shape or quantity	- compare, describe and solve practical problems for: - time [for example, quicker, slower, earlier, later] - measure and begin to record the following: - time (hours, minutes, seconds) - sequence events in chronological order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] - recognise and use language relating to dates, including days of	- describe position, direction and movement, including whole, half, quarter and three-quarter turns	Year 2 Objectives - interpret and construct simple pictograms, tally charts, block diagrams and tables - ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity - ask-and-answer questions about totalling and comparing categorical data	- count to and across 100, forwards and backwards, beginning with 0 or 1 , or from any given number - count, read and write numbers to 100 in numerals; count in multiples of $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10s - given a number, identify 1 more and 1 less - identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least - read and write numbers from 1 to 20 in numerals and words

the week, weeks, months

and years

- tell the time to the hour and half past the hour and draw the hands on a clock face to show these times

Year 2

- recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ an fract
$\frac{3}{4}$ d $\overline{4}$ of a length, shape, set of objects or quantity
- write simple
fractions, for
example $\frac{1}{2}$ of $6=3$ and recognise the equivalence
of $\frac{2}{4}$ and $\frac{1}{2}$

Year 2

- recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value
- find different combinations of coins that equal the same amounts of money
- solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change
- compare and sequence intervals of time
- tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times
- know the number of minutes in an hour and the number of hours in a day

Year 2

- order and arrange combination s of mathematic al objects in patterns and sequences
- use
mathematic al
vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and threequarter turns (clockwise and anticlockwise)

Year 2

- interpret and construct simple pictograms, tally charts, block diagrams and tables
- ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity
- ask-and-answer questions about totalling and comparing categorical data

Year 2

- count in steps of 2,3, and 5 from 0 , and in 10 s from any number, forward and backward
- recognise the place value of each digit in a two-digit number (10s, 1s)
- identify, represent and estimate numbers using different representations, including the number line
- compare and order numbers from 0 up to 100; use <, > and = signs
- read and write numbers to at least 100 in numerals and in words
- use place value and number facts to solve problems

Lower Key Stage 2

National Curriculum:

The principal focus of mathematics teaching in lower key stage 2 is to ensure that pupils become increasingly fluent with whole numbers and the four operations, including number facts and the concept of place value. This should ensure that pupils develop efficient written and mental methods and perform calculations accurately with increasingly large whole numbers. At this stage, pupils should develop their ability to solve a range of problems, including with simple fractions and decimal place value. Teaching should also ensure that pupils draw with increasing accuracy and develop mathematical reasoning so they can analyse shapes and their properties, and confidently describe the relationships between them. It should ensure that they can use measuring instruments with accuracy and make connections between measure and number. By the end of year 4, pupils should have memorised their multiplication tables up to and including the 12 multiplication table and show precision and fluency in their work. Pupils should read and spell mathematical vocabulary correctly and confidently, using their growing word reading knowledge and their knowledge of spelling.

Aułumn Term - Strands

Place Value

Year 3

- count from 0 in multiples of 4, 8, 50 and 100 ; find 10 or 100 more or less than a given number
- recognise the place value of each digit in a 3-digit number (100s, 10s, 1s)
- compare and order numbers up to 1,000
- identify, represent and estimate numbers using different representations
- read and write numbers up to 1,000 in numerals and in words
- solve number problems and practical problems involving these idea

Addition and Subtraction

Programme of Study

Year 3

- add and subtract numbers mentally, including:
- a three-digit number and 1 s
- a three-digit number and 10 s
- a three-digit number and 100 s
- add and subtract numbers with up to 3 digits, using formal written methods of columnar addition and subtraction
- estimate the answer to a calculation and use inverse operations to check answers
- solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction

Multiplication and Division

Year 3

- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables
- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence

Year 4

- count in multiples of 6, 7, 9, 25 and 1,000
- find 1,000 more or less than a given number
- count backwards through 0 to include negative numbers
- recognise the place value of each digit in a four-digit number ($1,000 \mathrm{~s}, 100 \mathrm{~s}, 10 \mathrm{~s}$, and 1s)
- order and compare numbers beyond 1,000
- identify, represent and estimate numbers using different representations
- round any number to the nearest 10,100 or 1,000
- solve number and practical problems that involve all of the above and with increasingly large positive numbers
- read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of 0 and place value

Year 4

- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate
- estimate and use inverse operations to check answers to a calculation
- solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why

Year 4

- recall multiplication and division facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together 3 numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and three-digit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects

Spring Term - Strands

Multiplication and Division	Fractions	Measurement	Position and Direction
Programme of Study			
Year 3	Year 3	Year 3	Year 3
- recall and use multiplication and division facts for the 3,4 and 8 multiplication tables	- count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts	- measure, compare, add and subtract: lengths	Year 4 Objectives - describe positions on

- write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods
- solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects
and in dividing one-digit numbers or quantities by 10
- recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators
- recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators
- recognise and show, using diagrams, equivalent fractions with small denominators
- add and subtract fractions with the same denominator within one whole [for example, $\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$]
- compare and order unit fractions, and fractions with the same denominators
- solve problems that involve all of the above

Year 4

- recall multiplication and division facts for multiplication tables up to 12 $\times 12$
- use place value, known and derived facts to multiply and

Year 4

- recognise and show, using diagrams, families of common equivalent fractions
- count up and down in hundredths; recognise that hundredths arise when
(m/cm/mm); mass (kg/g) volume/capacity (l/ml)
- measure the perimeter of simple 2-D shapes
- add and subtract amounts of money to give change, using both £ and p in practical contexts
- tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks
- estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight
- know the number of seconds in a minute and the number of days in each month, year and leap year
- compare durations of events [for example, to calculate the time taken by particular events or tasks]
a 2-D grid
as
coordinates
in the first
quadrant
- describe
movements between positions as translations of a given unit to the left/right and up/down
- plot
specified
points and draw sides to
complete a given
polygon

Year 4

- convert between different units of measure [for example, kilometre to metre; hour to minute]
- measure and calculate the perimeter of a
- describe positions on a 2-D grid as
coordinates
divide mentally, including multiplying by 0 and 1 ; dividing by 1 ; multiplying together 3 numbers
- recognise and use factor pairs and commutativity in mental calculations
- multiply two-digit and threedigit numbers by a one-digit number using formal written layout
- solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by 1 digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects
dividing an object by 100 and dividing tenths by 10
- solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number
- add and subtract fractions with the same denominator
- recognise and write decimal equivalents of any number of tenths or hundreds
- recognise and write decimal
equivalents to $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$
- find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths
- round decimals with 1 decimal place to the nearest whole number
- compare numbers with the same number of decimal places up to 2 decimal places
- solve simple measure and money problems involving fractions and decimals to 2 decimal places
rectilinear figure (including squares) in centimetres and metres
- find the area of rectilinear shapes by counting squares
- estimate, compare and calculate different measures, including money in pounds and pence
- read, write and convert time between analogue and digital 12 - and 24 hour clocks
- solve problems involving converting from hours to minutes, minutes to seconds, years to months, weeks to days
in the first quadrant
- describe movements between positions as translations of a given unit to the left/right and up/down
- plot
specified points and draw sides to
complete a given polygon

Summer Term - Strands

Fractions	Decimals	Statistics	Measurement	Shape
Programme of Study				
Year 3				
- count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-	Year 4 Objectives - round decimals with 1 decimal place to the	- interpret and present data using bar charts, pictograms and tables	- measure, compare, add and subtract: lengths (m/cm/mm); mass (kg/g);	- draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them

digit numbers or quantities by 10

- recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators
- recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators
- recognise and show, using diagrams, equivalent fractions with small denominators
- add and subtract fractions with the same denominator within one whole [for
example, $\frac{5}{7}+\frac{1}{7}=\frac{6}{7}$]
- compare and order unit fractions, and fractions with the same denominators
- solve problems that involve all of the above
nearest
whole number
- compare numbers with
the same
number of decimal
places up to
2 decimal
places
- solve simple measure and money
problems
involving
fractions and decimals to 2 decimal places
solve one-step and two-step questions [for example 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables
volume/capacit
y (l / ml)
- measure the perimeter of simple 2-D shapes
- add and subtract amounts of money to give change, using both £ and p in practical contexts
- tell and write the time from an analogue clock, including using Roman numerals from to XII, and 12hour and 24hour clocks
- estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes and hours; use vocabulary such as o'clock, am/pm, morning, afternoon, noon and midnight
- know the number of
seconds in a
- recognise angles as a property of shape or a description of a turn
- identify right angles, recognise that 2 right angles make a halfturn, 3 make threequarters of a turn and 4 a complete turn; identify whether angles are greater than or less than a right angle
- identify horizontal and vertical lines and pairs of perpendicular and parallel lines
minute and the number of days in each month, year and leap year
- compare durations of events [for example, to calculate the time taken by particular events or tasks]

Year 4

- recognise and show, using diagrams, families of common equivalent fractions
- count up and down in hundredths; recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10
- solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number
- add and subtract fractions with the same denominator
- recognise and write decimal equivalents of any number of tenths or hundreds
- recognise and write decimal equivalents to $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$
- find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the

Year 4

- round decimals with 1 decimal place to the nearest whole number
- compare numbers with the same number of decimal places up to 2 decimal places
- solve simple measure and money problems involving fractions and decimals to 2 decimal places

Year 4

- interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs
- solve
comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs

Year 4

- convert between different units of measure [for example, kilometre to metre; hour to minute]
- measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres
- find the area of rectilinear shapes by counting squares
- estimate, compare and calculate different measures, including money in pounds and pence
- read, write and convert time between analogue and digital 12 - and 24-hour clocks

Year 4 Year 4

- compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes
- identify acute and obtuse angles and compare and order angles up to 2 right angles by size
- identify lines of symmetry in 2-D shapes presented in different orientations
- complete a simple symmetric figure with respect to a specific line of symmetry
answer as ones, tenths and hundredths
- round decimals with 1 decimal place to the nearest whole number
- compare numbers with the same number of decimal places up to 2 decimal places
- solve simple measure and money problems involving fractions and decimals to 2 decimal places
- solve problems
involving
converting from hours to minutes, minutes to seconds, years to months, weeks to days

Upper Key Stage 2

National Curriculum:

The principal focus of mathematics teaching in upper key stage 2 is to ensure that pupils extend their understanding of the number system and place value to include larger integers. This should develop the connections that pupils make between multiplication and division with fractions, decimals, percentages and ratio. At this stage, pupils should develop their ability to solve a wider range of problems, including increasingly complex properties of numbers and arithmetic, and problems demanding efficient written and mental methods of calculation. With this foundation in arithmetic, pupils are introduced to the language of algebra as a means for solving a variety of problems. Teaching in geometry and measures should consolidate and extend knowledge developed in number. Teaching should also ensure that pupils classify shapes with increasingly complex geometric properties and that they learn the vocabulary they need to describe them. By the end of year 6, pupils should be fluent in written methods for all four operations, including long multiplication and division, and in working with fractions, decimals and percentages. Pupils should read, spell and pronounce mathematical vocabulary correctly.

Autumn Term - Strands

Four Operations -
Addition and Subtraction/Multiplication and Division
Programme of Study
Year 5
Year 5
read, write, order and compare numbers to at least $1,000,000$ and determine the value of each digit

- count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000
- interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through 0
- round any number up to $1,000,000$ to the nearest 10 , 100, 1,000, 10,000 and 100,000
- solve number problems and practical problems that involve all of the above
- read Roman numerals to 1,000 (M) and recognise years written in Roman numerals
add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)
- add and subtract numbers mentally with increasingly large numbers
- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- identify multiples and factors, including finding all factor pairs of a number, and common factors of 2 numbers
- know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers
- establish whether a number up to 100 is prime and recall prime numbers up to 19
- multiply numbers up to 4 digits by a oneor two-digit number using a formal written method, including long multiplication for two-digit numbers
- multiply and divide numbers mentally, drawing upon known facts
- divide numbers up to 4 digits by a onedigit number using the formal written method of short division and interpret remainders appropriately for the context
- multiply and divide whole numbers and those involving decimals by 10, 100 and 1,000
- recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)
- solve problems involving multiplication and division, including using their knowledge of factors and multiples, squares and cubes
- compare and order fractions whose denominators are all multiples of the same number
- identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths
- recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number [for example, $\frac{2}{5}+\frac{4}{5}=\frac{6}{5}=1 \frac{1}{5}$]
- add and subtract fractions with the same denominator, and denominators that are multiples of the same number
- multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams
- read and write decimal numbers as fractions [for example, $0.71=\frac{71}{100}$]
- recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents
- round decimals with 2 decimal places to the nearest whole number and to 1 decimal place
- read, write, order and compare numbers with up to 3 decimal places
- solve problems involving number up to 3 decimal places
- recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per 100', and write percentages as a fraction with denominator 100 , and as a decimal fraction
- solve problems which require knowing percentage and decimal equivalents $\begin{array}{lllll}1 & 1 & 1 & 2\end{array}$
of $\overline{2}, \overline{4}, \overline{5}, \frac{2}{5}, \overline{5}$ and those fractions with a denominator of a multiple of 10 or 25
solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign
- solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates

Year 6

- read, write, order and compare numbers up to $10,000,000$ and determine the value of each digit
- round any whole number to a required degree of accuracy
- use negative numbers in context, and calculate intervals across 0
- solve number and practical problems that involve all of the above

Year 6

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context
- divide numbers up to 4 digits by a twodigit number using the formal written method of short division where appropriate, interpreting remainders according to the context
- perform mental calculations, including with mixed operations and large numbers
- identify common factors, common multiples and prime numbers
- use their knowledge of the order of operations to carry out calculations involving the 4 operations
- solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why
- solve problems involving addition, subtraction, multiplication and division
- use estimation to check answers to calculations and determine, in the context

Year 6

- use common factors to simplify fractions; use common multiples to express fractions in the same denomination
- compare and order fractions, including fractions >1
- add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions
- multiply simple pairs of proper fractions, writing the answer in its simplest form [for

$$
\text { example, } \frac{1}{4} \times \frac{1}{2}=\frac{1}{8} \text {] }
$$

- divide proper fractions by whole numbers [for example, ${ }^{\frac{1}{3}} \div 2=\frac{1}{6}$]
- associate a fraction with division and calculate decimal fraction equivalents [for example,
0.375] for a simple fraction [for example, $\frac{3}{8}$]
- identify the value of each digit in numbers given to 3 decimal places and multiply and divide numbers by 10,100 and 1,000 giving answers up to 3 decimal places
- multiply one-digit numbers with up to 2 decimal places by whole numbers
- use written division methods in cases where the answer has up to 2 decimal places
- solve problems which require answers to be rounded to specified degrees of accuracy

Spring Term - Strands

Ratio	Fractions, decimals and percentages	Algebra	Measurement
Programme of Study			
Year 5	Year 5	Year 5	Year 5
Year 6 Objectives - solve problems involving the relative sizes of 2 quantities where missing values can be found by using integer multiplication and division facts - solve problems involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison - solve problems involving similar shapes where the scale factor is known or can be found - solve problems involving unequal sharing and grouping using knowledge of	- compare and order fractions whose denominators are all multiples of the same number - identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths - recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number [for example, $\frac{2}{5}+\frac{4}{5}=\frac{6}{5}=1 \frac{1}{5}$] - add and subtract fractions with the same denominator, and denominators that are multiples of the same number - multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams - read and write decimal numbers as fractions [for example, $0.71=\frac{71}{100}$] - recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents - round decimals with 2 decimal places to the nearest whole number and to 1 decimal place	- use simple formulae - generate and describe linear number sequences - express missing number problems algebraically - find pairs of numbers that satisfy an equation with 2 unknowns - enumerate possibilities of combinations of 2 variables	- convert between different units of metric measure [for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre] - understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints - measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres - calculate and compare the area of rectangles (including squares), including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres $\left(\mathrm{m}^{2}\right)$, and estimate the area of irregular shapes - estimate volume [for example, using $1 \mathrm{~cm}^{3}$ blocks to build cuboids (including cubes)] and capacity [for example, using water]

fractions and

Year 6

Year 6 Objectives

- solve problems involving the relative sizes of 2 quantities where missing values can be found by using integer multiplication and division facts
- solve problems involving the calculation of percentages [for example, of measures and such as 15% of 360] and the use of percentages for comparison
- solve problems involving similar shapes where the scale factor is
read, write, order and compare numbers with up to 3 decimal places
- solve problems involving number up to 3 decimal places
- recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per 100', and write percentages as a fraction with denominator 100, and as a decimal fraction
- solve problems which require knowing percentage and decimal $\frac{1}{2} \frac{1}{4}, \frac{1}{5} \quad \frac{4}{5}$ equivalents of $\overline{2}, \overline{4}, \overline{5}, \overline{5}, \overline{5}$ and those fractions with a denominator of a multiple of 10 or 25
- solve problems involving converting between units of time
- use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling

Year 6

- use simple formulae
- generate and describe linear number sequences
- express missing number problems algebraically
- find pairs of numbers that satisfy an equation with 2 unknowns
- enumerate possibilities of combinations of 2 variables

Year 6

- solve problems involving the calculation and conversion of units of measure, using decimal notation up to 3 decimal places where appropriate
- use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to 3 decimal places
- convert between miles and kilometres
- recognise that shapes with the same areas can have different perimeters and vice versa
- recognise when it is possible to use formulae for
known or can be found
- solve problems involving unequal sharing and grouping using knowledge of fractions and multiples
identify the value of each digit in numbers given to 3 decimal places and multiply and divide numbers by 10,100 and 1,000 giving answers up to 3 decimal places
- multiply one-digit numbers with up to 2 decimal places by whole numbers
- use written division methods in cases where the answer has up to 2 decimal places
- solve problems which require answers to be rounded to specified degrees of accuracy
- recall and use equivalences between simple fractions, decimals and percentages, including in different contexts
area and volume of shapes
- calculate the area of parallelograms and triangles
- calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for example, mm^{3} and km^{3}]

Summer Term - Strands

Measurement	Statistics	Shape	Position and direction
Programme of Study			
Year 5	Year 5	Year 5	Year 5
- convert between different units of metric measure [for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre] - understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints - measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres - calculate and compare the area of rectangles (including squares), including using standard units, square centimetres (cm^{2}) and square metres	- solve comparison, sum and difference problems using information presented in a line graph - complete, read and interpret information in tables, including timetables	- identify 3-D shapes, including cubes and other cuboids, from 2-D representations - know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles - draw given angles, and measure them in degrees (${ }^{\circ}$) - identify: - angles at a point and 1 whole turn (total 360°)	- identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed

$\left(m^{2}\right)$, and estimate the area of irregular shapes

- estimate volume [for example, using 1 cm^{3} blocks to build cuboids (including cubes)] and capacity [for example, using water]
- solve problems involving converting between units of time
- use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling
- angles at a point on a straight line and half a turn (total 180°)
- other multiples of 90°
- use the properties of rectangles to deduce related facts and find missing lengths and angles
- distinguish between regular and irregular polygons based on reasoning about equal sides and angles
-

Year 6

- solve problems involving the calculation and conversion of units of measure, using decimal notation up to 3 decimal places where appropriate
- use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to 3 decimal places
- convert between miles and kilometres
- recognise that shapes with the same areas can have different perimeters and vice versa
- recognise when it is possible to use formulae for area and volume of shapes
- calculate the area of parallelograms and triangles
interpret and construct pie charts and line graphs and use these to solve problems
- calculate and interpret the mean as an average

Year 6

- draw 2-D shapes using given dimensions and angles
- recognise, describe and build simple 3-D shapes, including making nets
- compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles quadrilaterals, and regular polygons
- illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
- recognise angles where they meet at a point, are

Year 6

- describe positions on the full coordinate grid (all 4 quadrants)
- draw and translate simple shapes on the coordinate plane, and reflect them in the axes
- calculate, estimate and compare
volume of cubes and cuboids using standard units, including cubic
on a straight line, or are centimetres (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units [for example, mm^{3} and km^{3}] vertically opposite, and find missing angles

